2-Amino-6-methoxy-4,5-di(methoxycarbonyl)pyridine and 2-Amino-4,5-di-(methoxycarbonyl)-6-methylthiopyridine

John N. Low,^{*a*} George Ferguson,^{*b*} Justo Cobo,^{*c*} Manuel Melguizo,^{*c*} Manuel Nogueras^{*c*} and Adolfo Sánchez^{*c*}

^aDepartment of Applied Physics and Electronic & Mechanical Engineering, University of Dundee, Dundee DD1 4HN, Scotland, ^bDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1, and ^cDepartamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain

(Received 16 August 1995; accepted 11 September 1995)

Abstract

The title compounds, dimethyl 5-amino-1-methoxy-2,3-pyridinedicarboxylate, $C_{10}H_{12}N_2O_5$, and dimethyl 5-amino-1-methylthio-2,3-pyridinedicarboxylate, $C_{10}H_{12}$ - N_2O_4S , are not isomorphous but have similar packing and hydrogen-bonding patterns. Both structures contain hydrogen-bonded ribbons, with van der Waals contacts between the ribbons.

Comment

2-Aminopyridine derivatives constitute a class of nitrogen heterocycles used in the agrochemical and pharmaceutical industries (Vijn, Arts, Maas & Castelijns, 1993). They are also appropriately functionalized to allow preparation of other types of pyridine-fused heterocyclic systems of potential biological interest (Shawcross & Stanforth, 1993; Cobo, Sánchez & Nogueras, 1993). The structures of dimethyl 5-amino-1-methoxy-2,3-pyridinedicarboxylate, (I), and dimethyl 5-amino-1-methylthio-2,3-pyridinedicarboxylate, (II), have been determined.

Views of compounds (I) and (II) are shown in Figs. 1(a) and (b), respectively. If the 6-methoxy and 6-methylthio residues are excluded, the molecular dimensions (Tables 2 and 4) show that there is very little difference between the two molecules, *i.e.* in the range 0.001-0.015 Å, mean difference 0.006 Å.

Fig. 1. Views of (a) compound (I) and (b) compound (II) with their atomic numbering schemes. Displacement ellipsoids are drawn at the 30% probability level.

The molecules, however, differ markedly in conformation, with the methoxycarbonyl residues at atoms C4 and C5 having quite different torsion angles $[C4-C5-C51-O51 \ 12.4 \ (2)^{\circ}$ in (I) and $-16.1 \ (2)^{\circ}$ in (II), and C5-C4-C41-O41 \ 81.4 \ (2)^{\circ} in (I) and $119.7 \ (2)^{\circ}$ in (II)].

In both structures, the molecules are linked by N— $H \cdots O$ hydrogen bonds to form base pairs related by an inversion centre. These pairs are then further linked about other inversion centres to form hydrogen-bonded ribbons; geometrical details are given in Tables 2 and 4. Contacts between the ribbons correspond with van der Waals contacts.

Experimental		O61 C61	0.2786 (2) 0.2848 (3)	1.0601 0.9359	2 (13) (2)	0.37723 (12) 0.2888 (2)	0.0397 (3) 0.0411 (4)	
Compounds (I) and (II) were synthesized according to Cobo,		Table 2 Selected geometric parameters $(\overset{\circ}{A} \circ)$ for (1)						
Compound (I) Crystal data $C_{10}H_{12}N_2O_5$ $M_r = 240.22$ Triclinic $P\overline{1}$ a = 7.2245 (15) Å b = 8.7974 (13) Å c = 9.181 (2) Å	Mo K α radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 7.5-17.0^{\circ}$ $\mu = 0.117$ mm ⁻¹ T = 294 (1) K	N1-C2 N1-C6 N2-C2 C2-C3 C3-C4 C4-C5 C4-C4 O41-C O42-C5 C4-C4 O42-C5 C6-C5 C3-C4 C5-C4 C3-C4 C3-C4	1 41 41 	1.345 (2) 1.325 (2) 1.325 (2) 1.344 (2) 1.405 (2) 1.368 (2) 1.403 (2) 1.511 (2) 1.322 (2) 1.322 (2) 126.61 (14) -94.4 (2) 81.4 (2) 79.4 (2)	042	6	1,448 (2) 1,448 (2) 1,416 (2) 1,213 (2) 1,213 (2) 1,317 (2) 1,318 (2) 1,338 (2) 1,449 (2) 1,338 (2) 1,442 (2) 124,34 (14) -164,0 (2) -167,0 (2) 165 (2)	
$ \begin{aligned} \alpha &= 81.027 (13) \\ \beta &= 80.521 (13)^{\circ} \\ \gamma &= 76.580 (15)^{\circ} \end{aligned} $	$0.40 \times 0.26 \times 0.25 \text{ mm}$ Light yellow	C5—C4 C4—C5		- 104.7 (2) 12.4 (2)	N1—C6- C5—C6-	O61C61 O61C61	3.5 (2) -176.87 (14)	
$V = 556.3 (2) \text{ Å}^{3}$ Z = 2 $D_{x} = 1.434 \text{ Mg m}^{-3}$ D_{m} not measured		N2—H2 N2—H2 Symme	$A \cdots A$ $A \cdots O51^{i}$ $B \cdots O41^{ii}$ etry codes: (i) x	D - H 0.86 0.86 , y - 1, z; (i	$H \cdots A$ 2.12 2.31 h = -x, 2 = -x	$D \cdots A$ 2.922 (2) 3.045 (2) y, 2 - z.	<i>D</i> —H··· <i>A</i> 156 144	
Data collection Enraf–Nonius CAD-4 diffractometer θ/2θ scans	$\theta_{\text{max}} = 26.91^{\circ}$ $h = -8 \rightarrow 9$ $k = 0 \rightarrow 11$	$Comp$ $Crysta$ $C_{10}H_{12}$ $M_r = 2$	ound (II) l data 2N ₂ O ₄ S 256.28		$Mo K \lambda = 0$	α radiation .7107 Å		
Absorption correction: none 2417 measured reflections 2417 independent reflections 1813 observed reflections $[I > 2\sigma(I)]$	$l = -11 \rightarrow 11$ 3 standard reflections frequency: 120 min intensity decay: no decay, variation 0.5%	Triclinic $P\overline{1}$ a = 8.0720 (10) Å b = 8.6448 (14) Å c = 8.990 (2) Å $\alpha = 94.35 (2)^{\circ}$ $\beta = 111.133 (13)^{\circ}$			Cell parameters from 25 reflections $\theta = 10.0-18.0^{\circ}$ $\mu = 0.283 \text{ mm}^{-1}$ T = 294 (1) K Prism $0.38 \times 0.35 \times 0.29 \text{ mm}$			
Refinement Refinement on F^2 R(F) = 0.0468 $wR(F^2) = 0.1408$ S = 1.127 2417 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0842P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.038$ $\Delta\rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.22 \text{ e} \text{ Å}^{-3}$	$\gamma = 91$ $V = 58$ $Z = 2$ $D_x = 1$ $D_m \text{ no}$.703 (13)° 32.4 (2) Å ³ .461 Mg m ⁻ t measured	3	Yellov	w		
154 parameters H atoms riding (<i>SHELXL</i> 93 defaults, C—H 0.93–0.96, N—H 0.86 Å)	PrefectionsDefinitOther of the sectorsparametersAtomic scattering factorstoms riding (SHELXL93from International Tablesefaults, C—H 0.93–0.96,for Crystallography (1992,V—H 0.86 Å)Vol. C, Tables 4.2.6.8 and6.1.1.4)		Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none			$\theta_{max} = 26.89^{\circ}$ $h = -10 \rightarrow 10$ $k = 0 \rightarrow 11$ $l = -11 \rightarrow 11$ 3 standard reflections		
Table 1. Fractional atomic coordinates and equivalent		2530 measured reflections		frequency: 120 min				

Fractional atomic coordinates isotropic displacement parameters $(Å^2)$ for (I)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	Ζ	U_{eq}
N1	0.2417 (2)	0.87926 (15)	0.57814 (15)	0.0345 (3)
C2	0.2160 (3)	0.8419 (2)	0.7263 (2)	0.0359 (4)
N2	0.2076 (3)	0.6919(2)	0.7764 (2)	0.0523 (5)
C3	0.1993 (3)	0.9531 (2)	0.8257 (2)	0.0362 (4)
C4	0.2086 (2)	1.1040 (2)	0.7680 (2)	0.0319 (4)
C41	0.1755 (3)	1.2217 (2)	0.8792 (2)	0.0354 (4)
041	0.0215 (2)	1.30370 (15)	0.91396 (14)	0.0500 (4)
042	0.3310 (2)	1.21062 (15)	0.94178 (14)	0.0478 (4)
C42	0.3159 (4)	1.3164 (3)	1.0522 (2)	0.0607 (6)
C5	0.2346 (2)	1.1482 (2)	0.6141 (2)	0.0305 (4)
C51	0.2523 (2)	1.3109 (2)	0.5614 (2)	0.0319 (4)
051	0.2769 (2)	1.39726 (14)	0.64476 (14)	0.0541 (4)
O52	0.2382 (2)	1.35690 (14)	0.41979 (14)	0.0503 (4)
C52	0.2615 (3)	1.5158 (2)	0.3677 (2)	0.0524 (5)
C6	0.2509 (2)	1.0260 (2)	0.5250 (2)	0.0305 (4)

Refinement Refinement on F^2 R(F) = 0.0347 $wR(F^2) = 0.0959$ S = 1.0332530 reflections 154 parameters H atoms riding (SHELXL93 defaults, C-H 0.93-0.96, N-H 0.86 Å)

2530 independent reflections

2126 observed reflections

 $[I>2\sigma(I)]$

frequency: 120 min intensity decay: no decay, variation 0.6%

 $w = 1/[\sigma^2(F_o^2) + (0.0556P)^2$ + 0.1212*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.21 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Z	U_{eq}
N1	0.7275 (2)	0.47172 (15)	0.99964 (14)	0.0346 (3)
C2	0.6639 (2)	0.3258 (2)	0.9417 (2)	0.0359 (3)
N2	0.6334 (2)	0.2839 (2)	0.7863 (2)	0.0505 (4)
C3	0.6323 (2)	0.2167 (2)	1.0382 (2)	0.0375 (3)
C4	0.6584 (2)	0.2645 (2)	1.1937 (2)	0.0319 (3)
C41	0.6328 (2)	0.1418 (2)	1.2946 (2)	0.0334 (3)
O41	0.4930 (2)	0.07147 (14)	1.27038 (13)	0.0458 (3)
O42	0.78704 (15)	0.11255 (13)	1.40408 (13)	0.0415 (3)
C42	0.7789 (3)	0.0030 (2)	1.5151 (2)	0.0473 (4)
C5	0.7168 (2)	0.4191 (2)	1.2568 (2)	0.0305 (3)
C51	0.7241 (2)	0.4630 (2)	1.4214 (2)	0.0314 (3)
O51	0.6490 (2)	0.38546 (13)	1.48672 (13)	0.0433 (3)
O52	0.8200 (2)	0.59449 (13)	1.49093 (12)	0.0425 (3)
C52	0.8275 (2)	0.6399 (2)	1.6519 (2)	0.0432 (4)
C6	0.7545 (2)	0.5173 (2)	1.1528 (2)	0.0316 (3)
S61	0.84473 (6)	0.70968 (5)	1.21952 (5)	0.04283 (14)
C61	0.8692 (3)	0.7755 (2)	1.0434 (2)	0.0511 (4)

Table 4. Selected geometric parameters (Å, °) for (II)

N1-C2	1.340 (2)	O42—C42		1.443 (2)
N1C6	1.340 (2)	C5C6		1.413 (2)
N2—C2	1.347 (2)	C5-C51		1.479 (2)
C2C3	1.406 (2)	O51-C51		1.206 (2)
C3C4	1.365 (2)	O52—C51		1.332 (2)
C4C5	1.409 (2)	O52C52		1.450 (2)
C4C41	1.502 (2)	S61C6		1.766 (2)
O41C41	1.205 (2)	S61C61		1.796 (2)
O42—C41	1.325 (2)			
C6C5C51	127.07 (13)	N1C6	C5	123.11 (13)
C3-C4-C41-O41	-64.2(2)	C5—C4—C4	1-042	-65.8(2)
C5-C4-C41-O41	119.7 (2)	N1-C6-S6	01—C61	-0.40(14)
C3-C4-C41-O42	110.4 (2)	C5—C6—S6	01—C61	178.67 (13)
<i>D</i> H· · · · <i>A</i>	D—H	H···A	$D \cdot \cdot \cdot A$	D—H···A
N2—H2A· · · O51'	0.86	2.20	2.939 (2)	145
N2—H2B· · ·O41 ⁱⁱ	0.86	2.33	3.153 (2)	160
Summatry and ast (i) a			n _	

Symmetry codes: (i) x, y, z - 1; (ii) 1 - x, -y, 2 - z.

For both compounds, only a unique data set was collected. The diagrams [Figs. 1(*a*) and (*b*)] were prepared using *ORTEPII* (Johnson, 1976) as implemented in *PLATON* (Spek, 1995*a*) and the packing plots [Figs. 2(*a*) and (*b*), in deposit material] were prepared with *PLUTON* (Spek, 1995*b*). Examination of the structure with *PLATON* showed that there were no solvent-accessible voids in the crystal lattice.

For both compounds, data collection: *CAD*-4/*PC* Software (Enraf–Nonius, 1992); cell refinement: Enraf–Nonius SET4 (de Boer & Duisenberg, 1984) and *CELDIM*; data reduction: *DATRD2* in *NRCVAX*94 (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structures: *SHELXS86* (Sheldrick, 1985) for (I); *SOLVER* in *NRCVAX* for (II). For both compounds, program(s) used to refine structures: *NRCVAX*94 and *SHELXL*93 (Sheldrick, 1993); molecular graphics: *NRCVAX*94, *PLATON* and *PLUTON*; software used to prepare material for publication: *NRCVAX*94, *SHELXL*93 and WordPerfect.

GF thanks NSERC (Canada) for Research Grants.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles, together with packing diagrams for both compounds, have been deposited with the IUCr (Reference: AB1308). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Boer, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
- Cobo, J., García, C., Melguizo, M., Sánchez, A. & Nogueras, M. (1994). Tetrahedron, 50, 10345-10354.
- Cobo, J., Sánchez, A. & Nogueras, M. (1993). Seventh Fechem Conferences on Heterocycles in Bio-Organic Chemistry. Book of Abstracts, p. 61. Santiago de Compostela, Spain.
- Enraf-Nonius (1992). CAD-4/PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Shawcross, A. P. & Stanforth, S. P. (1993). J. Heterocycl. Chem. 30, 563–565.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1995a). PLATON. Molecular Geometry Program. Version of July 1994. University of Utrecht, Utrecht, The Netherlands.
- Spek, A. L. (1995b). PLUTON. Molecular Graphics Program. Version of July 1994. University of Utrecht, Utrecht, The Netherlands.
- Vijn, R. J., Arts, H. J., Maas, P. J. & Castelijns, A. M. (1993). J. Org. Chem. 58, 887–891.

Acta Cryst. (1996). C52, 145-148

6-Methoxy-4,5-di(methoxycarbonyl)-2-(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)aminopyridine and 4,5-Di(methoxycarbonyl)-6-methylthio-2-(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)aminopyridine

John N. Low,^{*a*} George Ferguson,^{*b*} Justo Cobo,^{*c*} Manuel Melguizo,^{*c*} Manuel Nogueras^{*c*} and Adolfo Sánchez^{*c*}

^aDepartment of Applied Physics and Electronic & Mechanical Engineering, University of Dundee, Dundee DD1 4HN, Scotland, ^bDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and ^cDept. Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain

(Received 16 August 1995; accepted 11 September 1995)

Abstract

The title compounds, dimethyl 2-methoxy-6-(2, 3, 4-tri-O-acetyl- β -D-xylopyranosyl)amino-3, 4-pyridinedi-